A Return to the Right Stuff?

In previous posts I’ve talked about the changing culture of risk at NASA and about the qualities and characteristics that make astronauts stand apart from the rest of the population. Recently, I’ve begun to notice a correlation between these two facets of spaceflight. In the 1960s when the astronauts were test pilots routinely facing death, NASA took more risks. In recent years as the astronaut corps has grown to include more scientists as well as everyday people like school teachers, the missions have become more routine – low Earth orbit has become a comfort zone throughout the shuttle program. (Left, the Mercury astronauts. 1959.)

Over the past half-century, NASA’s astronauts have gone from heavy drinking and fast driving fighter jocks riding in cobbled together capsules to engineers and scientists in sophisticated spacecraft. Tied up in this shift, is there an expectation that NASA will never let anything bad happen to its astronauts? Is the growing need for safety potentially standing in the way of bold manned missions that assume the same risk as 1968s Apollo 8? Continue reading “A Return to the Right Stuff?”

Advertisements

Rogallo After Gemini

In a previous post, I looked at the Rogallo paraglider wing landing system and its failed development as part of NASA’s Gemini program. I also mentioned that the landing system didn’t disappear right away. After its cancellation from Gemini, NASA attempted to salvage its research and incorporate the landing system in Apollo and its follow-up programs. The US Air Force also expressed interest in including the Rogallo wing into its own space program. Regardless of the extra attention, it would seem that the paraglider was doomed to never leave the ground. (Left, a model Gemini capsule with Rogallo wing in a wind tunnel test. 1961.) Continue reading “Rogallo After Gemini”

Mapping Vintage Space

Regular readers of Vintage Space are doubtless aware that I have a tendency to link newer posts to older ones. This reflects the interrelation of all the topics I have (and will) discuss in this blog. I find this era of history to be complex (as most big historical eras are) with aspects that can be treated independently, but need to be contextualized by one another.

And so I thought I would begin mapping Vintage Space, building a sort of narrative roadmap that will give the more casual reader a better idea of where in the history of space and spaceflight each individual episode belongs. This is in no way a complete chronology, but rather a framework for my content. (Pictured, the sun rise above the gulf of Mexico as seen from orbit by Apollo 7. 1968.) Continue reading “Mapping Vintage Space”

Spaceflight: Risky Business

One of the things that fascinates me about NASA’s early manned programs is the risks the organization took to achieve its goals. The Apollo Program is a great example: NASA had a goal, a time frame in which to achieve its goal, and a real need to succeed. The risks could be justified in the name of a successful end-of-decade lunar landing. But the organization also had the money needed to achieve such a technological feat – roughly 4 percent of the GDP in the mid-1960s instead of the less than 1 percent it has now. (Pictured, engineers and astronauts begin troubleshooting in the minutes after an explosion rocked Apollo 13. 1970.)

Still, it wasn’t just having enough money to run the tests needed to get the results. NASA made bold, daring decisions in the 60s. Since the end of Apollo, however, NASA has become more conservative in its approach to both manned spaceflight and unmanned planetary exploration. Continue reading “Spaceflight: Risky Business”

The Space Shuttle Era, Winding Down

On February 24, 2011, the space shuttle Discovery launched for its final trip into orbit. The main objective of the STS-133 mission is to deliver and install a permanent multipurpose module (what NASA is calling a ‘floating closet’) to give occupants of the International Space Station increased storage. Discovery is also delivering Robonaut 2 to the ISS. It is the first human analogue to go in space; it will undergo a series of tests to see how well a robot can function in a zero gravity environment. (Pictured is Discovery on the launch pad the eve before launch. February 23, 2011.)

While this is Discovery’s last fight, the shuttle program as a whole has two more mission lined up: STS-134 will see Endeavour launch into orbit on April 19, and STS-135 will see Atlantis launch on June 28. Even taking into account possible delays and scrubbed launches, it’s safe to say the shuttle program will likely be finished by the end of 2011. So, what’s next? Continue reading “The Space Shuttle Era, Winding Down”

Talking Vintage Space

I’ve recently found that good things come from using Twitter! Mark Ratterman approached me (via email) asked if I would like to join him and fellow hosts Gene Mikulka, Gina Herlihy, and Sawyer Rosenstein on their podcast Talking Space.

I joined the team this past Sunday for a very fun and interesting discussion. I answered questions and shared my opinions on the Space Shuttle, landing systems, and one-way trips to Mars.

Listen to the episode entitled “A New Look on ‘Vintage Space'”!

Inventing Landings

A couple of weeks ago I published a post outlining the principle reasons why splashdowns were a not an appropriate long-term method for astronauts returning to earth. Pointing to the ease of splashdowns as the primary reason behind their use throughout the space race is, however, presenting half the story. NASA began pursuing land landings in 1959, well before the Space Shuttle was on the drawing board. The original goal was to use a land landing system from the start. (Pictured is a model Mercury spacecraft undergoing impact tests at Langley Air Force Base. 1958.)

When NASA’s inaugural Mercury program was in its infancy and the base decisions about the program were being made, one of the central unknowns in spaceflight was how to bring a spacecraft back to earth. Like designing astronauts, spacecraft, as well as launch vehicles, determining how to land a spacecraft was a new problem with precious little pre-existing knowledge on which to build. Continue reading “Inventing Landings”